Quantum solution to the arrow-of-time dilemma.
نویسنده
چکیده
The arrow-of-time dilemma states that the laws of physics are invariant for time inversion, whereas the familiar phenomena we see everyday are not (i.e., entropy increases). I show that, within a quantum mechanical framework, all phenomena which leave a trail of information behind (and hence can be studied by physics) are those where entropy necessarily increases or remains constant. All phenomena where the entropy decreases must not leave any information of their having happened. This situation is completely indistinguishable from their not having happened at all. In the light of this observation, the second law of thermodynamics is reduced to a mere tautology: physics cannot study those processes where entropy has decreased, even if they were commonplace.
منابع مشابه
Comment on "Quantum solution to the arrow-of-time dilemma".
A recent letter by Maccone presents a solution based on the existing laws of quantum mechanics to the arrow-of-time dilemma. He argues that all phenomena in which the entropy decreases must not leave any information (in the observer's memory) of their having occurred because the observer is a part of the whole system. Maccone concludes that quantum mechanics is necessary to his argument, which ...
متن کاملThe Thermodynamic Arrow-of-time and Quantum Mechanics
I give an explanation of the thermodynamic arrow-of-time (namely entropy increases with time) within a quantum mechanical framework. This entails giving a solution to the Loschmidt paradox, i.e. showing how an irreversible macro-dynamics can arise from a reversible micro-dynamics. I argue that, in accordance to the reversible dynamics, both entropy-increasing and entropy-decreasing transformati...
متن کاملTime-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)
Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...
متن کاملQUANTUM VERSION OF TEACHING-LEARNING-BASED OPTIMIZATION ALGORITHM FOR OPTIMAL DESIGN OF CYCLIC SYMMETRIC STRUCTURES SUBJECT TO FREQUENCY CONSTRAINTS
As a novel strategy, Quantum-behaved particles use uncertainty law and a distinct formulation obtained from solving the time-independent Schrodinger differential equation in the delta-potential-well function to update the solution candidates’ positions. In this case, the local attractors as potential solutions between the best solution and the others are introduced to explore the solution space...
متن کاملTime-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)
Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 103 8 شماره
صفحات -
تاریخ انتشار 2009